Immobilization of DNA at Glassy Ccarbon Electrodes: A Critical Study of Adsorbed Layer
نویسندگان
چکیده
In this work we present a critical study of the nucleic acid layer immobilized at glassy carbon electrodes. Different studies were performed in order to assess the nature of the interaction between DNA and the electrode surface. The adsorption and electrooxidation of DNA demonstrated to be highly dependent on the surface and nature of the glassy carbon electrode. The DNA layer immobilized at a freshly polished glassy carbon electrode was very stable even after applying highly negative potentials. The electron transfer of potassium ferricyanide, catechol and dopamine at glassy carbon surfaces modified with thin (obtained by adsorption under controlled potential conditions) and thick (obtained by casting the glassy carbon surface with highly concentrated DNA solutions) DNA layers was slower than that at the bare glassy carbon electrode, although this effect was dependent on the thickness of the layer and was not charge selective. Raman experiments showed an important decrease of the vibrational modes assigned to the nucleobases residues, suggesting a strong interaction of these residues with the electrode surface. The hybridization of oligo(dG)21 and oligo(dC)21 was evaluated from the guanine oxidation signal and the reduction of the redox indicator Co(phen)3. In both cases the chronopotentiometric response indicated that the compromise of the bases in the interaction of DNA with the electrode surface is too strong, preventing further hybridization. In summary, glassy carbon is a useful electrode material to detect DNA in a direct and very sensitive way, but not to be used for the preparation of biorecognition layers by direct adsorption of the probe sequence on the electrode surface for detecting the hybridization event.
منابع مشابه
Direct DNA Immobilization onto a Carbon Nanotube Modified Electrode: Study on the Influence of pH and Ionic Strength
Over the past years, DNA biosensors have been developed to analyze DNA interaction and damage that have important applications in biotechnological researches. The immobilization of DNA onto a substrate is one key step for construction of DNA electrochemical biosensors. In this report, a direct approach has been described for immobilization of single strand DNA onto carboxylic acid-functionalize...
متن کاملEffect of support on power output of ethanol/O2 biofuel cell
Enzymatic biofuel cells have many great usages as a small power source for medical and environmental applications. In this paper, we employed carboxylated multiwall carbon nanotube- (1-ethyl-3-methylimidazolium bis (trifluoromethyl sulfonyl) imide) ionic liquid nanocomposite on two different electrodes (glassy carbon and carbon felt) for immobilizing alcohol dehydrogenase. The properties of the...
متن کاملSimple immobilization of pyrroloquinoline quinone on few-walled carbon nanotubes
Pyrroloquinoline quinone (PQQ) was immobilized on glassy-carbon electrodes (GCE) modified with single-walled carbon nanotubes (SWCNT), few-walled carbon nanotubes (FWCNT) and carbon black (Vulcan XC72R). Modified electrodes were prepared by drop-casting. Immobilization was achieved with an extremely simple dipping procedure and without any further modification to the electrodes. Electrochemical...
متن کاملStudy on Electrochemical Oxidation of m-Nitrophenol on Various Electrodes Using Cyclic Voltammetry
The electrochemical oxidation behavior of m-nitrophenol (m-NP) was studied comparatively on glassy carbon electrode, Pt electrode, PbO2 electrode, SnO2 electrode, and graphite electrode using cyclic voltammetry. The cyclic voltammetry measurements were performed in acidic (1 M H2SO4, pH 0.4), neutral (1 M Na2SO4, pH 6.8), and...
متن کاملAn impedance study of the adsorption of nucleic acid bases at glassy carbon electrodes.
Electrochemical impedance has been used to study the adsorption at glassy carbon electrodes of guanine, its corresponding nucleoside, guanosine, and adenine. Impedance studies at different concentrations and applied potentials show clearly that all three bases are adsorbed on the electrode, blocking the surface. Irradiating the electrode with low-frequency (20 kHz) ultrasound whilst recording t...
متن کامل